
Bridging the Gap between Simulation and Experimental Evaluation in
Computer Networks

Marinho P. Barcellos∗, Giovani Facchini, Hisham H. Muhammad
Guilherme B. Bedin, Paulo Luft

marinho@acm.org, {facchini, hisham.hm, gbedin,pauloluft}@gmail.com

PIPCA - Postgraduate Program in Applied Computing
UNISINOS - Universidade do Vale do Rio dos Sinos

Av. Unisinos, 950. São Leopoldo, RS. CEP 93022-000

Abstract

Simulation and experimentation are two complementary techniques for
performance evaluation, each one of them having opposite characteristics
and advantages. While one allows total control and abstraction in the ex-
periment, the other provides greater detail and realism. Though ideally it
would be desirable to perform both, it is hard to direct the required efforts
to develop a performance evaluation twice, once over a simulator and then
again on a real network. In this paper a new approach is explored through
a tool called Simmcast Testbed, which allows one to execute, from a single
codebase, experiments both in simulation and experimentation mode. A di-
dactic example is discussed in detail, and the correlation of the simulated
and experimental results is presented.

1. Introduction

There are three classic methods of evaluating the perfor-

mance of computer networks and their protocols: analyti-
cal evaluation, simulation, and experimentation (also called

experimental evaluation). These methods have been exten-

sively explored in both academy and industry, and are well-

understood by scientists and engineers. Analytical evalua-

tion is very useful to determine general properties of a pro-

tocol, by measuring performance and cost under input pa-

rameter variation. However, it works well only for simple

models, as they need to be expressed as a set of equations.

Simulation allows a variable degree of abstraction, from

simple to detailed, depending on the model built and of

the corresponding source code. As exemplified in our ear-

lier work ([1]), simulation has the potential to allow one to

gracefully increase its degree of detail, such that the simu-

lation development process can result in protocol instances

(e.g., sender, receiver, client, server, master, etc.) running

on top of an “emulated network”, ready to be moved to a

“real network”.

Experimentation consists of a series of test executions

of a protocol over a physical network, and therefore can

produce more realistic results. Nonetheless, because of the

great influence of the topology, the operating systems and

the specific settings adopted, results obtained are tied to a

configuration and thus are hard to reproduce by other re-

searchers. The logistics involved in realizing experiments,

like obtaining accounts, gets in the way when experiments

are of internet scale and involve multiple autonomous sys-

tems. Clearly, experimentation requires implementing the

protocol, or at least a functional prototype. Each methodol-

ogy has its own relative merits: none can be applied equally

well to all situations.

Although discrete simulation is very common in the field

of computer networks, the results produced, isolatedly, are

not reliable enough. Limitations or common mistakes in us-

ing simulation, such as indicated in [4] and [3], may lead

to distorted results. The same applies to analysis or ex-

perimentation. Particularly, in the latter, wrong values can

be found due to unpredictable factors, background traffic

and improper computer or network hardware configuration.

Therefore, it would be advisable to employ all three meth-

ods complementarily, as part of a process to understand the

workings of a protocol, and to obtain performance and cost

measurements in regard to its main input parameters and

desired network conditions. Pragmatically, it is likely that

two methods combined will suffice; which two will depend

mainly on the problem at hand and the available tools.

We would expect to find simulation accompanied by ei-

ther analytical or experimentation. An attractive alternative

for many cases would be to use simulation along with exper-

imentation. To understand how frequently this occurred in

computer network research, we examined over 600 papers

from recent editions of highly selective scientific events on

the field (namely, ACM SIGCOMM, IEEE INFOCOM, and

IEEE ICNP). Results found confirm that simulation is very

common, appearing in 67.4% of cases. The study also indi-

cates that simulation is used by itself in 8.0% of cases and

Proceedings of the 39th Annual Simulation Symposium (ANSS’06)
0-7695-2559-8/06 $20.00 © 2006 IEEE

31.1% along with experimentation.

We believe simulation does not appear more often with

experimentation due to the implementation effort associated

with each of these methods. Further, when they do appear

in tandem, these methodologies are used separately, one af-

ter the other. This occurs because, among other reasons, the

simulation code is different from the prototype code em-

ployed during experimentation.

It would be desirable that simulation and experimenta-

tion could be part of the same, integrated set, such that the

researcher could seamlessly alternate between both meth-

ods. Clearly, not all types of work on protocols allow this

situation; for example, a simulation support is required to

provide different levels of abstraction, and to emulate un-

derlying layers.

In this paper, we propose an extension for the Simmcast

network simulator ([1, 7]) that promotes the use of simula-

tion along with experimentation for application-level proto-

cols. The rest of the paper is structured as follows. Section

2 presents Simmcast Testbed, including its interface and us-

age. A simulated reliable multicast protocol is described in

Section 3. Although simple, it serves as a proof-of-concept.

This protocol is employed in Section 4 to obtain simulation

as well as experimental results. By measuring the correla-

tion between simulated and actual results, we evaluate the

power of our proposal. Section 5 closes the paper with final

remarks and future work.

2. Simmcast Testbed

Simmcast Testbed is an Application Programming Inter-

face (API) for the Java language, which isolates the pro-

grammer from both the peculiarities of the simulation en-

vironment and network library details. The API compre-

hends communication resources and a thread model, being

composed of two implementations, according to the back-

end employed: either the Simmcast framework or the actual

Java APIs for network programming and threads.

The Testbed proposed is based on Simmcast, a simula-

tion framework for protocol and distributed systems. Before

presenting interface and implementations of the Simmcast

Testbed API, we briefly review Simmcast, emphasizing its

role as a simulation back-end.

2.1. Simmcast as a simulation back-end

Simmcast is an object-oriented framework for network

protocol simulation ([1, 7]). Simmcast Testbed employs this

simulation framework as one of the possible back-ends for

its execution. The main properties of Simmcast are a mod-

ular architecture and a process-based simulation model, as

explained below.

In the Simmcast architecture, classes correspond to

building blocks that are dynamically connected to build the

simulation environment. Hosts correspond to HostNode
objects, and routers to RouterNode objects (both derived

from Node, which represents a more abstract notion of

node).

The process-based simulation model seems very ade-

quate for the simulation of computing systems, since each

process corresponds directly to an execution thread of the

simulated program. In Simmcast, each process or thread

is mapped as a NodeThread object. By allowing Node
objects (and hence, HostNode and RouterNode) to be

comprised of one or more NodeThread objects, multi-

threaded protocols may be designed in a natural manner.

These two characteristics make the Simmcast API quite

realistic, similar to the actual communication and threading

APIs in Java. However, at the same time, it allows more ab-

stract simulations, through higher-level entities like Node.

This intentional proximity to the APIs was a key factor in

the development of Simmcast Testbed. It allowed the de-

sign of this new API to be restricted only by the properties

of the real execution environment, free from simplifications

imposed by the simulation environment.

2.2. Simmcast Testbed API

Simmcast Testbed is an API that has two implemen-

tations: Testbed-Sim and Testbed-Exp, which use

as back-ends, respectively, the Simmcast framework and

the Java thread and network APIs. Both are implemented

through a Java package called simmcast.testbed.

The thread model of Simmcast Testbed follows the

model adopted by Java, and is comprised of two

classes: Program and ProgramThread. The class

ProgramThread corresponds to a Java thread, and in

fact, the set of methods offered is very similar. The class

Program, on its turn, corresponds to an independent in-

stance of a program, including the main method through

which other threads are initiated. Consider, for example,

a client/server application where the server has multiple

threads for the concurrent handling of requests. In this

case, client and server correspond to two independent in-

stances of Program, whereas the server threads would

be multiple instances of ProgramThread. Another ex-

ample is the structuring of a complex protocol in a set of

threads with synchronous behavior, separating in a node

the roles of transmission and reception of packets; in this

case there would be one instance of Program and two of

ProgramThread.

The primitives of Simmcast Testbed for sending and re-

ceiving data are in an intermediary level of abstraction be-

tween the Simmcast and Java models. In Simmcast Testbed,

class ProgramThread directly provides three primitives

Proceedings of the 39th Annual Simulation Symposium (ANSS’06)
0-7695-2559-8/06 $20.00 © 2006 IEEE

for sending and receiving data: send(), receive()
and receiveMulticast(). The send() method re-

ceives as an argument a byte vector and the methods

receive() and receiveMulticast() return an ob-

ject DataPacket containing the byte vector received.

Management of sockets is done implicitly in

Testbed-Exp: when a sending or receiving primi-

tive is called with an address which was not specified

previously, a new socket is opened internally. Another im-

portant abstraction is the management of multicast groups:

in the Testbed-Exp implementation, when sending to

a new group, the request joinGroup() is performed

transparently; in the Testbed-Sim implementation,

the building block Group of Simmcast is employed. In

the Testbed-Exp implementation, data is transmitted

through ordinary datagrams.

While IP addresses in Java are codified through

InetAddress objects, in Simmcast nodes and mul-

ticast groups are identified more simply through nu-

meric identifiers. In Simmcast Testbed, a class

NetworkAddress abstracts network addressing. Meth-

ods like getLocalHost() are made available such

that the addresses are always specified in the form of

NetworkAddress objects.

Asynchronous timers are a resource commonly used in

the description of protocols. Simmcast possesses a callback

resource through the onTimer() method, which simpli-

fies the specification of timers. This resource was repro-

duced in Simmcast Testbed.

Because of these properties, the API of Simmcast

Testbed keeps a strong correspondency with the network

and threading programming model provided by Java, as

well as with the programming model employed with Simm-

cast. In fact, this similarity can be observed in Table 1,

which summarizes and compares the methods.

2.3. Simmcast Testbed Usage

The choice of the execution model (simulated or

real) happens at execution time, when specified to the

Java Virtual Machine (JVM) which copy of the pack-

age simmcast.testbed should be imported. Thus, it

is possible to alternate between the Testbed-Sim and

Testbed-Exp modes without recompilation.

In the “real” execution, each instance of Program cor-

responds to an independent JVM, possibly executing in dis-

tinct computers. In the simulated run, a single instance

of the simulator will create all instances of Program and

execute them in a single JVM. Consequently, the way ex-

periments are started differs depending on the execution

mode, and must be prepared separatedly. For the initial-

ization of the Testbed-Exp mode, Simmcast Testbed

offers a Main class, which has a static method main
and receives a Program class as a parameter. In the

Testbed-Sim mode, the initialization of Program ob-

jects is done through the plain text file that describes

the simulation, constructing the simulation scenario us-

ing dynamic class loading. Apart from the initualiza-

tion, all protocol code used in modes Testbed-Exp and

Testbed-Sim is identical.

When using Simmcast Testbed, some care is necessary

to ensure portability between the two modes of execution.

The main precaution is to avoid accessing directly the un-

derlying APIs (either the network and threading APIs of

Java, or the Simmcast APIs), or else it is likely that the

resulting code will work solely in one of the two modes.

Other important measures refer to the peculiarities of the

real and simulated environments. In the real environment,

static variables can be used (e.g., to allow sharing among

threads), since each station executes its program in a sepa-

rate JVM. In contrast, in the simulated mode all Program
objects would erroneously share the same variable.

The intentional sharing of variables, although a common

technique in simulation, causes a portability problem for

programs developed initially for Testbed-Sim mode and

later executed in Testbed-Exp mode. Global variables

can be a useful resource in simulations, because they can be

used for the declaration of global input simulation param-

eters as well as collection of global statistics. When using

Simmcast Testbed, per-node global data can be stored as

instance variables of Program objects.

It is important to note that a big difference between the

Testbed-Sim and Testbed-Exp environments in the presence

of a global synchronized clock in the former. If the code

assumes the synchronicity of the clocks of the various nodes

into account, the experiment is likely to fail when moved

from Testbed-Sim to Testbed-Exp. Therefore, it is advisable

to assume an asynchronous network even when working in

simulation mode.

3. Case Study

In this section, we present a case study that demonstrates

the use of Simmcast Testbed. Since the purpose is to present

a development methodology, we employ a simple exam-

ple, so that it can be presented in its entirety. The exam-

ple employed is a reliable multicast that follows the “Stop-

and-Wait” approach. An implementation of this protocol is

provided as one of the examples of Simmcast1. Through

Simmcast Testbed, the example is adapted to be executed

both in the simulator and in a real network.

1available at http://www.unisinos.br/~simmcast.

Proceedings of the 39th Annual Simulation Symposium (ANSS’06)
0-7695-2559-8/06 $20.00 © 2006 IEEE

Simmcast Testbed Simmcast Java

ProgramThread NodeThread Thread

Program HostNode main program

DataPacket TransportPacket DatagramPacket

NetworkAddress Node.networkId (int) InetAddress

Clock.getDate() Network.simulationTime() System.currentTimeMillis()

ProgramThread.send() Node.send() DatagramSocket.send()

ProgramThread.receive() Node.receive() DatagramSocket.receive()

ProgramThread.receiveMulticast() Node.receive() MulticastSocket.receive()

Table 1. Correspondency between methods and classes of Simmcast Testbed and the equivalent
ones in Simmcast and in the Java Language.

3.1. Transmission protocol

Experiments with the Stop-and-Wait reliable muticast

protocol are easy to reproduce. This (1-N) model features a

sender and N receivers in a destination group, whose iden-

tity is known. Receivers receive packets transmitted by the

sender and reply to each received packet with an ACK back

to the sender. The role of the sender is to transmit a packet

and wait for one or more ACKs from each receiver in the

destination group. Losses are detected at the sender by

means of a timeout: the sender transmits a data packet and

starts a regressive timer, which can be either cancelled if all

ACKs exepected are received in time, or it can expire, in

which case the sender assumes there has been a loss of data

or ACKs and retransmits the packet. All packets have an in-

creasing sequence number, and the sender can only transmit

packet seq + 1 after all ACKs for seq have been received.

Each receiver node is implemented as an object of

the SinkNode class. The latter is a subclass of class

Node of Simmcast. It contains a single execution thread,

SinkThread, through which the protocol logic is de-

scribed. Analogously, the sender is implemented as an ob-

ject of the SourceNode class which contains the execu-

tion thread SourceThread. In the configuration file, a

network with a star topology is specified and indicated to

sender the identity of the receivers members of the group.

3.2. Adaptation to Simmcast Testbed

The preparation for the execution of the protocol in

Simmcast Testbed is comprised of two steps: first, it is nec-

essary to adapt the program for the Simmcast Testbed API.

Second, it is necessary to adapt the code to remove func-

tionality based on assumptions that are valid only for sim-

ulation, such as shared variables. The first step is straight-

forward. As presented in Section 2.2, the API is intention-

ally similar to both the simulator API as well as the Java

API, to ease conversions in both ways. During this step,

the program may be tested in the simulator employing the

Testbed-Sim mode of execution.

The second step consists in removing from the experi-

ment simplifications adopted during simulation model de-

velopment which would prevent the operation in a real net-

work, including potential measurements in interval times

based on the assumption of a global simulation clock. This

step requires an analysis of the characteristics of the experi-

ment in question. Considering the receiver presented in this

example, we only need to modify the access to the API an

employ a serializer to send data, because in the new API the

primitive takes an array of bytes instead of an object. There-

after, the receiver can be executed in both Testbed-Sim
and Testbed-Exp modes. The changes required to the

sender for this model are analogous to the receiver, since it

does not make strong simulation-based assumptions such as

shared clocks. Another small change required is the passing

of parameters for initialization, since in the simulator this

is done through a Simmcast script and in the real network

through the command line.

Figure 1 compares the main execution loop of the

SourceThread class in the original version and in the

adapted one. Note that the changes presented here are re-

stricted to API syntax and the usage of the Serializer
class to transform objects into byte arrays, because in the

simulator packets carry arbitrary Java objects, with size as

an abstract property, and in the Testbed it is necessary to

specify the actual sequence of bytes that will flow through

the network. In the simulator, packets are identified by an

attribute called type. To provide similar information when

running over the network, a DataObject class is used,

which contains the sequence and type information.

In order to build a simulation model that is close to the

real implementation and achieve results in simulation that

resemble the ones in the real network, we first monitored

the network and determined its main properties. In partic-

ular, we assessed the mean and standard deviation for end-

to-end latency and average loss rate. Along with bandwidth

Proceedings of the 39th Annual Simulation Symposium (ANSS’06)
0-7695-2559-8/06 $20.00 © 2006 IEEE

int source = sourceNode.getNetworkId();
int destination = sourceNode.gid;
PacketType packetType = new PacketType("DATA_PACKET");
int size = 1;
for (int i = 1; i <= sourceNode.numPktsToSend; i++) {

Integer msg = new Integer(i);
boolean isAckSetComplete = false;
TreeSet ackList = new TreeSet();
while (!isAckSetComplete) {

send(new Packet(source, destination, packetType, size, msg));
while (!isAckSetComplete &&

(numTimeouts + ackList.size()) < sourceNode.gids.length) {
Packet reply = (Packet) receive(sourceNode.timerLength);
if (reply != null){

Integer seq_r = (Integer) (reply.getData());
if (seq_r.equals(msg)) {

int receiver = reply.getSource();
ackList.add(new Integer(receiver));
if (ackList.size() == sourceNode.gids.length) {

isAckSetComplete = true;
}}}}}

}

(a) Implementation of SouceThread

for the Simmcast simulator.

Clock clock = new Clock(sourceNode);
NetworkAddress destination = sourceNode.gid;
int size = 1;
for (int i = 1; i <= sourceNode.numPktsToSend; i++) {

Integer msg = new Integer(i);
boolean isAckSetComplete = false;
TreeSet ackList = new TreeSet();
while (!isAckSetComplete) {

byte[] dataToBeSent = null;
DataObject dataObject = new DataObject();
dataObject.seq = msg.intValue();
dataObject.type = "DATA_PACKET";
dataToBeSent = Serializer.serialize(dataObject);
send(dataToBeSent,dataToBeSent.length, destination, sourceNode.port);
while (!isAckSetComplete &&

(numTimeouts+ackList.size()) < sourceNode.receivers.size()) {
DataPacket reply = receive(port,timeOut,dataLength);
if (reply != null) {

DataObject dataInPacket = null;
dataInPacket = (DataObject) Serializer.rebuild(reply.getData());
int seq_r = dataInPacket.seq;
if (seq_r == msg.intValue()) {

ackList.add(reply.getSource().toString());
if (ackList.size() == sourceNode.receivers.size()) {

isAckSetComplete = true;
}}}}

}

(b) Adaptation of SourceThread

to Simmcast Testbed

Figure 1. Comparison between original simulator code and the code adapted to the execution in both
simulator and real network.

Proceedings of the 39th Annual Simulation Symposium (ANSS’06)
0-7695-2559-8/06 $20.00 © 2006 IEEE

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10

T
ra

ns
m

is
si

on
 c

on
cl

us
io

n
tim

e
(s

)

Number of nodes

Testbed-Exp
fexp(x)

(a) Experimental (real) execution

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10

T
ra

ns
m

is
si

on
 c

on
cl

us
io

n
tim

e
(s

)

Number of nodes

Testbed-Sim
fsim(x)

(b) Simulated execution

Figure 2. Results of protocol execution in
terms of transfer time.

and physical topology, these parameters describe network in

terms of its connectivity and link properties. Using the pro-

tocol implementation, we measured the total time required

to complete execution, delays associated with scheduling

and processing overheads from incoming and outgoing

packets. To model the delays associated with the processing

of packets in the operating system network stack, we em-

ployed two simulator primitives: setReceiveTime and

setSendTime. The link delay parameters were modeled

through the average latency observed in experiments with

the real network.

4. Results

Each single run consisted of a simple session in which

the sender reliably transmited 10,000 packets to the group

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10

T
ra

ns
m

is
si

on
 c

on
cl

us
io

n
tim

e
(s

)

Number of nodes

fexp(x)
fsim(x)

Figure 3. Comparison between the functions
of linear adjustment for experimental and
simulated executions.

of receivers. The size of the destination group varied from

1 to 10 receivers. For each combination of group size and

execution mode, 10 iterations were run, totalling 200 exper-

iments.

The experiment with Testbed-Exp was performed in

a controlled environment. The tests were run on a cluster

of 11 Linux machines connected through a Gigabit network

(all machines connected to a Gigabit Ethernet switch). The

machines were Dual Xeon 2.4GHz with 1GByte of RAM

running Gentoo Linux kernel 2.6.10. One machine ran the

sender, whereas the rest ran the receivers, one per machine.

To reproduce this scenario, the configuration file that

describes a simulation scenario was set to represent a star

topology. All nodes of type SinkNode (receivers) and

SourceNode (sender) were connected to a node of type

DefaultRouterNode (switch). The properties of links

connecting nodes mirrored the real scenario: 1Gbps band-

width, negligible loss rate (we observed less than 0.001%)

and latency described by a Normal distribution with average

0.095ms and standard deviation 0.02.

The results of executions in Testbed-Exp and

Testbed-Sim modes are presented in Figures 2(a) and

2(b), respectively. In both cases, they show the points

from all iterations and the linear adjustment for each execu-

tion mode. The linear adjustment function of execution in

Testbed-Exp is fexp(x) = 4.62199 + 0.807406x, and

the adjustment of execution in Testbed-Sim is given by

fsim(x) = 4.52811 + 0.724613x (all values are given in

seconds).

The adjustment of point in a function aims to represent

the behavior of the protocol being modeled. When compar-

ing the adjustments obtained between executions in simu-

Proceedings of the 39th Annual Simulation Symposium (ANSS’06)
0-7695-2559-8/06 $20.00 © 2006 IEEE

lated and experimental modes, it becomes possible to verify

if the behavior shown by the execution of a program in both

modes are equivalent.

The two adjustment functions are presented together in

Figure 3. We can observe clearly that it is possible to obtain

values that are very close in simulated and real executions

and, mainly, that the behavior of the protocol in both modes

are consistent between each other. The small distance be-

tween the lines was expected, since modeling the behavior

and overhead induced by scheduling is a challenging task

and depends heavily on the operating system installation

and hardware architecture used.

5. Concluding Remarks

Simmcast Testbed is being actively used in the investi-

gation of high-performance transmission protocols, mecha-

nisms for large-scale online games, and secure computing

in P2P networks. Testbed acts like a link between two of

the main techniques employed in performance evaluation

in the fields of computer networks and distributed systems:

simulation and experimentation. We presented in this pa-

per not only a tool, but a methodology for the development

of research in this area, in which the controlled environ-

ment of a simulator can be used during implementation and

debugging, and the richness of detail of a live network en-

vironment can be used to obtain precise results. The main

advantage of this methodology is the possibility of taking

turns between the two environments on an as-needed basis,

without having to port the code again. This is only possi-

ble due to the fact that Simmcast Testbed is a “transitional”

API, sitting between the levels of abstraction of a simulator

and a network programming library.

The approach proposed in this paper is novel. It cannot

be confused with network emulation facilities, such as the

ones offered by certain simulators. In VINT ns-2, emula-

tion ([10]) means to allow a simulation to be executed in a

machine that will generate, as events in its simulation, the

sending of packets in the real network; conversely, a simu-

lation in another machine could receive packets and inter-

pret the reception of such packet as an entry (event) in the

simulation. Note that the simulation clock differs from the

physical clock time, since there are two distinct simulations

involved, with independent clocks and discrete events. For

NIST ([9]) and Delayline ([8]), emulatiton means to execute

applications in a testbed comprised of a set of workstations

modified to add delays, packet losses and other desired con-

ditions in a network during an experiment.

One similar initiative is Netbed ([14]). It is an environ-

ment that offers a common set of abstractions for different

types of links and nodes to make an environment that com-

bines simulation, emulation and experimentation in a real

network. Its design generalizes resources and mechanisms

in common abstractions applicable to a variety of realiza-

tions of emulation, simulation and experimentation. Netbed

is based on NS-2 and offers to the users the access to a phys-

ical testbed and nodes distributed through a Web interface.

Netbed, unlike Simmcast Testbed, does not allow the same

protocol code or application be transparently migrated.

The approach proposed here can be compared in re-

gard to the methods of simulation and experimentation,

when employed isolatedly. Individually, it is expected that

each one requires less effort than when developing through

Simmcast Testbed. Without Testbed, the amount of work

required to “convert” a simulation into a working prototype

will vary from case to case, depending on the target, the

language employed, and the way the protocol was modeled

in the simulation. The higher the level of detail included

in the simulation, and allowed by the simulator, the smaller

should be the effort.

In terms of functionality, the Testbed API imposes cer-

tain restrictions in regards to what can be done by the proto-

col code. Noticeably, the only existing support currently is

the transmission of messages by means of UDP datagrams.

That is, there is no support for TCP streams not more so-

phisticated communication functionality, such as Remote

Method Invocation (RMI). Some of these restrictions are

required for the implementation to run properly in both en-

vironments, simulated and real.

In terms of performance, the Exp version of the protocol

will present results that are inferior to the ones in a native

Java implementation, due to the overhead induced by the

thin layer Testbed-Exp that implements the API. There

is no data at this point to quantify such overhead, but since it

consists of a constant increase in processing time, the only

adverse effect should be a constant offset in the observed

results, without affecting their overall trends. Also, since

the Testbed API is modeled to resemble the Java API, once

the simulation and experimentation stages are completed,

the codebase can be used as a foundation for a native imple-

mentation.

References

[1] M. P. BARCELLOS, H. MUHAMMAD, and A. DETSCH,

“Simmcast: a Simulation Tool for Multicast Protocol Evalu-

ation”, XIX Simpósio Brasileiro de Redes de Computadores

(SBRC 2001), Anais, SBC, Flps., 21-25 Maio 2001.

[2] L. BRESLAU et alli. “Advances in Network Simulation”. In

IEEE Computer, volume 33, n. 5, pp. 59-67, May 2000.

[3] J. BYERS, G. HORN, M. HANDLEY, M. LUBY, W.

SHAVER, and L. VICISANO. “More Thoughts on Refer-

ence Simulations for Reliable Multicast Congestion Control

Shemes”. Notes from a meeting at Digital Fontain, August

8, 2000.

Proceedings of the 39th Annual Simulation Symposium (ANSS’06)
0-7695-2559-8/06 $20.00 © 2006 IEEE

[4] R. JAIN. “The Art of Computer Systems Performance Anal-

ysis”. John Wiley & Sons, 1991.

[5] I. KEIDAR, R. KHAZAN, N. LYNCH & A. SHVARTS-

MAN, “An Inheritance-Based Techique for Building Sim-

ulation Proofs Incrementally”, ACM Transactions on Soft-

ware Engineering and Methodology, Vol. 11, No. 1, January

2002.

[6] N. LYNCH, “Distributed Algorithms”, Morgan Kaufmann,

San Francisco, 1996.

[7] H. H. MUHAMMAD, M. P. BARCELLOS, “Simulating

Group Communication Protocols Through an Object -

Oriented Framework”, 35th Annual Simulation Symposium

(SS2002), Proceedings, IEEE (New York), San Diego, 14-

18 April 2002.

[8] D. B. INGHAM, G. D. PARRINGTON, “Delayline: A

Wide-Area Network Emulation Tool”, Computing Systems,

v.7, n.3, 1994.

[9] NISTNET, Project site, http://dns.antd.nist.
gov/itg/nistnet/.

[10] NS-2, Project site with online documentation about

NS-2, http://www.isi.edu/nsnam/ns/
ns-emulation.html.

[11] NS-2, Project site, http://www.isi.edu/nsnam/
ns/.

[12] SIMMCAST, Project site, http://www.inf.
unisinos.br/~simmcast.

[13] B. WHITE, J. LEPREAU, S. GURUPRASAD, “Lowering

the Barrier to Wireless and Mobile Experimentation”, Pro-

ceedings of the First Workshop on Hot Topics in Networks

(HotNets-I), October 2002.

[14] B. WHITE et alli. “An Integrated Experimental Environment

for Distributed Systems and Networks”, Proceedings of the

5th Symposium on Operating Systems Design & Implemen-

tation, pp. 255-270, December 2002

Proceedings of the 39th Annual Simulation Symposium (ANSS’06)
0-7695-2559-8/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

