
Preserving Lexical Scoping

When Dynamically Embedding Languages

Félix Ribeiro, Hisham Muhammad,
André Murbach Maidl, Roberto Ierusalimschy

Department of Computer Science � PUC-Rio � Rio de Janeiro � Brazil
{fribeiro,hisham,amaidl,roberto}@inf.puc-rio.br

Abstract. There are various situations in which one may want to embed
source code from one language into another, for example when combin-
ing relational query languages with application code or when performing
staged meta-programming. Typically, one will want to transfer data be-
tween these languages. We propose an approach in which the embedded
code shares variables with the host language, preserving lexical scoping
rules even after the code is converted into an intermediate representation.
We demonstrate this approach through a module for meta-programming
using Lua as both embedded and host languages, which decompiles Lua
functions to their AST form and can later rebuild them preserving scop-
ing rules of the decompilation site. Our method requires no special an-
notation of functions to be translated and is implemented as a library,
requiring no source pre-processing or changes to the host language exe-
cution environment.

Keywords: Lua, Domain-Speci�c Languages, Embedded Languages

1 Introduction

Domain-Speci�c Languages (DSLs) are a way to simplify the development of
programs through the aggregation of domain knowledge into a programming
language. A Domain-Speci�c Language is a programming language that includes
features to express the semantics of a domain, often adding speci�c syntax. Ex-
amples of DSLs are TEX for text processing, MATLAB for performing numerical
computations, SQL for querying relational databases and regular expressions for
pattern matching in text.

The use of DSLs frequently happens in combination with other languages,
so that some aspects of a problem are handled with the DSL while other parts
are developed in a general-purpose language [7]. One way to do this is to embed
source code written in the domain-speci�c language into the source code of the
application, which is written in another language. We have then the notion of
a host language and an embedded language. SQL and regular expressions are
examples of languages which are often used in this fashion.

Embedding source code of one language into another poses challenges. Typi-
cally, a language parser does not have support for handling chunks of code writ-
ten in another language intermixed with the source code. Common approaches

to handle the source code of two languages in a single source �le are to either
pull the processing back to a step prior to the parsing of the main language,
using pre-processing, or to push it forward by storing the code written in the
embedded language as strings in the host language source code, which are sent
to the embedded language for processing only at run time.

This approach of storing code as strings, while popular, has some inconve-
niences. For instance, it is not possible to detect syntactical errors while compil-
ing the code. Embedding languages should also allow programmers to transfer
data between these languages, taking care to keep data in sync. For these rea-
sons, solutions based on meta-programming, where the embedded language can
be manipulated at a higher level of abstraction than strings, are more interesting.

Multi-Stage Programming (MSP) [14,15,16] is a meta-programming approach
that helps embedding a programming language in a host language in a well-
organized way. It de�nes constructs for quoting and escaping source code that
produce code objects, which are valid objects stored in the host language but
can also be invoked to execute the embedded language. A major bene�t of MSP
is that it does not delay error veri�cation to run-time. One can detect syntactical
errors and even type errors in the embedded code during compile-time. Another
bene�t of MSP is that we can use program specialization to reduce the costs of
abstractions [14].

Using MSP to embed languages inside imperative languages can be hard,
because in these languages programmers can move code objects so they are used
outside of the scope of the binder of their free variables [17]. In purely functional
languages we do not have this problem due to the absence of side e�ects [9].

In this work, we propose an approach for meta-programming in which the
embedded code shares variables with the host language, preserving lexical scop-
ing rules even after the code is converted into an intermediate representation.
In our proposed method, the host language uses closures to share data with the
embedded language, replacing variable references with function calls in the gen-
erated code. This way, we ensure that variables always match the scope of their
declarations.

We demonstrate this approach through a module for meta-programming us-
ing Lua as both embedded and host languages. Our module decompiles Lua
functions to their Abstract Syntax Tree (AST) form and can later rebuild them
preserving scoping rules of the decompilation site. For simplicity, our implemen-
tation only supports functions that contain a single expression. We call these
functions lambda functions.

Our method requires no special annotation of functions to be translated and
is implemented as a library, requiring no source pre-processing or changes to the
host language execution environment. When an AST describes a function that
uses variables from an external local scope, it includes information about the
context where this function was de�ned.

We organize this paper in �ve sections. In Section 2 we review related work in
the �eld of multi-stage programming. In Section 3 we demonstrate our approach.

In Section 4 we formalize the semantics of our approach. In Section 5 we present
our conclusions.

2 Related Work

Meta-programming is the concept of writing programs that manipulate program
code as data, producing other programs. This allows programmers to improve
code performance or expressiveness by de�ning transformations over code. Lisp
[11] pioneered meta-programming by introducing a mechanism of quotation: ex-
pressions marked with the operator ' are not evaluated, and are treated as data.
Later Lisp dialects like Common Lisp and Scheme include quasi-quotation, rep-
resented with the operator `, that allows parts of the quoted expression to be
�escaped� (with the , operator). The combination of quasi-quotation and escap-
ing powers the macro system of those languages [1]. This feature, however, does
not preserve scoping rules.

Multi-Stage Programming [14,15,16] is similar to the quasi-quotation mech-
anism, but it takes lexical scoping into account. It features three constructs that
programmers can use to annotate code: brackets, escape, and run. We will use
MetaOCaml [2], an OCaml extension with MSP support through these three
staging constructs, to brie�y explain these constructs. Brackets, marked with
.<>., avoid the execution of a computation, constructing an object instead that
represents the marked block of code:

let x = 1 + 1;;

let y = .< 1 + 1 >.;;

In the above example, x has type int and y has type int code. This means
that the expression x + y is invalid code in MetaOCaml, as the types of both
variables do not match. Escapes, marked as .�, combine small delayed compu-
tations for building bigger ones:

let z = .< x + .~y >.;;

Here, the code .< x + .�y >. binds a new delayed computation 2 + (1 +

1) to z. Run, using the pre�x operator .!, executes staged code. In the example
below, the program will compile and execute the code inside z, assigning the
integer 4 to r:

let r = .!z;;

Implementing DSLs is one of the most interesting applications of MSP [3].
Implementing e�cient DSLs, either as interpreters or as compilers, is not an easy
task. The MSP constructs allow programmers to implement a DSL as a staged
interpreter, which translates the DSL code to the host language code, allowing
DSLs to run as e�ciently as the host code, taking advantage of the optimizations
of the underlying compiler [15].

1 class Program {

2 delegate int sumY (int arg);

3 Expression <sumY> boo () {

4 int y = 1;

5 Expression <sumY> treesumY = x => x + y;

6 y = y + 1;

7 return treesumY;

8 }

9 int foo () {

10 int y = 10;

11 Expression <sumY> ret = boo();

12 return ret.Compile()(40); // returns 42

13 }

14 }

Fig. 1. Lexical scoping in variables referenced in expression trees in C#.

Mint [17] is a MSP extension to Java. Even though MSP ensures correct-
ness while embedding languages using purely functional languages, the same is
not that straightforward when we try to use MSP for embbeding imperative
languages. The problem of embedding a language in an imperative language is
related to side e�ects, as programmers can move code objects beyond the bound
scope of free variables inadvertedly, a problem known as scope extrusion. Mint
extends the semantics of the escape construct to impose some restrictions on
side e�ects, not allowing side e�ects to appear inside a escape construct when
these side e�ects interact with delayed code.

LINQ (Language Integrated-Query) [12] is a set of features that extends C#,
allowing programmers to perform queries and manipulate data over di�erent
kinds of data storage such as XML and MDF. One can also use LINQ with data
structures such as lists and arrays.

In .NET, C# and Visual Basic de�ne a restricted type of anonymous func-
tion called an expression lambda, which is a function that consists of a single
expression. LINQ works as an embedded DSL [7] where anonymous functions
are used extensively, and was the motivating use case for the introduction of
expression lambdas. When one assigns an expression lambda to a variable of
type Expression<TDelegate>, .NET creates an AST corresponding to that ex-
pression, called an expression tree 1. Expression trees can also be created pro-
gramatically, manipulating node objects via the API of the Expression class.

Expression lambdas can access external local variables, and they respect
lexical scope, regardless if they are used to declare anonymous functions or only
to produce an expression tree. Figure 1 illustrates how lexical scoping is preserved

1 Note that in C# parlance, lambda expression is a more general term that can refer
to both single-expression anonymous functions called expression lambdas and multi-
statement functions called statement lambdas. Conversion to expression trees is only
supported for expression lambdas.

in expression trees. Free variable y in line 5 references the declaration from line
4, even when the expression tree returned in line 11 is compiled into a function
in line 12.

Terra [4] is a multi-stage language for high-performance computing. It uses
Lua as a host language and de�nes extensions for staged computation. Lua func-
tions that run in the Lua interpreter are declared using standard Lua syntax,
with the function construct. Staged code is declared as Terra functions, using
the terra statement. Terra functions use similar syntax to Lua, but they are
statically typed and compiled into native code using LLVM. Lua code can ma-
nipulate Terra types and functions as Lua objects. Terra also features a quote

statement for quoting blocks of Terra code as expression objects and brackets
([]) as the escape operator for evaluating Lua code inside a Terra function.

When a Terra function is declared, all Lua expressions escaped inside it and
Lua variables are replaced by the results of their evaluation. A Terra function,
therefore, does not form a closure with respect to free Lua variables. This design
trades lexical scoping for the guarantee that compiled Terra code does not need
to call back into the Lua interpreter during execution.

Metalua [5] is a Lua compiler that supports compile-time meta-programming,
a mechanism that allows programmers to interact with the compiler through a
macro system [6]. Metalua extends Lua 5.1 to provide methods for transforming
Lua code into Abstract Syntax Trees, but this code cannot contain references to
local variables of an outer scope.

Our implementation generates program ASTs in the same format as Metalua,
but including information about enclosing local variables. While Metalua handles
arbitrary Lua code syntactically marked for quoting, our module operates only
on restricted functions, but requires no quoting.

3 Lua2AST

Lua2AST is a Lua module that is able to generate ASTs given a restricted form
of Lua functions, that we named lambda functions. Lambda functions are de�ned
as functions that contain in its body a single return statement containing an
expression. This expression can be of any kind and can also use variables of the
outer lexical scope.

Lua supports functions as a �rst-class value. Function objects are proper
closures, and are internally implemented by storing along with each function a
internal set of boxed references any local variables belonging to outer lexical
scopes. In Lua, these references are called upvalues [8]. Upvalues implement
proper lexical scoping and are generally transparent to the Lua programmer,
but they can be directly manipulated through Lua's C API and through its
debug API. Lua2AST can produce a Lua function object given an AST, and
references to variables in the resulting function match the lexical scoping rules
of the call site where the AST was originally generated. As we will see below,
this is done using the debug API to correct upvalue references in the generated
code.

Lua2AST uses two external Lua libraries in its implementation: LuaDec and
Lua-Parser. Luadec [13] is a Lua decompiler that takes a Lua binary chunk and
returns a string with equivalent Lua source code. Lua-Parser [10] generates a Lua
table representing the code AST given a string of Lua source code. Lua2AST
works by decompiling the input function with LuaDec, producing an AST with
Lua-Parser and �nally resolving upvalue references in this AST, producing an
annotated AST with additional information that allows the library to recreate
the function's original environment.

Our approach to preserve variable references is to generate auxiliary closures
when converting the function into AST format. These auxiliary closures are
stored in the AST data structure. When compiling the AST back into a function,
variable references are replaced by function calls to these closures.

This approach presents two major advantages to usual methods for adding
staged computation to existing languages. Firstly, our implementation is done
entirely as a library. By internally using a decompiler, we can operate directly
on Lua function objects without having to use a source code preprocessor. This
results in a non-intrusive approach: we did not need to create language extensions
and we did not need to modify the Lua virtual machine.

Secondly, our approach is particularly suitable for a dynamic language. If
Lua2AST was implemented as a static pass over the input source code, it would
not be possible to transform dynamically-loaded functions into ASTs. Since
Lua2AST operates entirely at runtime, we are able to operate over any suit-
able lambda function, including dynamically-generated Lua functions, such as
those loaded during program execution using the dostring function.

Below, we will discuss the implementation in further detail, covering the two
main functions of the Lua2AST API: lua2ast.toAST and lua2ast.compile.

3.1 Function lua2ast.toAST(func)

The function toAST generates an AST from a Lua function. It takes a Lua
function as a parameter, which must be a lambda function. The function's return
is a Lua table that represents an AST. This table follows a standardized format
for Lua ASTs that was originally de�ned by the Metalua project [5]. If the
received function uses upvalues, this AST will be decorated with additional data,
so that upvalue references can be later reconstructed.

The function toAST initially calls the LuaDec decompiler to produce a source
code representation of the given function. This string is sent to the parse func-
tion of the Lua-Parser library, producing the AST that represents the code. The
AST as returned by Lua-Parser, however, would not be su�cient to reconstruct
the function with proper scoping rules. Simply rebuilding the plain AST into
source code and loading into Lua would produce a function where all local vari-
ables of outer scopes would turn into global variable references, since in Lua
undeclared variables are treated as globals by default.

The next step, therefore, is to detect locals of outer scopes and to annotate
them in the AST. This is done by scanning variable references in the AST and
matching them to the list of upvalues of the function object. Firstly, we �nd the

parameters of the function and store them in a set. Then, we locate the free
variables of the function, which are indenti�ers in our expression tree that are
not in the set of function arguments. These free identi�ers may be references to
outer locals or references to global variables. Any outer local will have a matching
entry in the internal list of upvalues of the closure. We look for this entry using
debug.getupvalue(), a function of Lua's standard library that allows us to
perform introspection of a function's upvalues. When the variable is found, we
decorate the AST node.

To do this decoration in our AST, we create a closure which will hold a
reference to our desired variable. To do so, we use the following helper function:

local function newclosure()

local temp

return function () return temp end

end

This function produces a new closure that contains an upvalue and merely re-
turns it. We then use the function debug.upvaluejoin(), also from the standard
library. This function gets an upvalue from a Lua closure and make it refer to
another upvalue from a di�erent function. We take the upvalue from our desired
variable and join it with the upvalue for the temp variable of our newly-created
closure. We then store this auxiliary closure in the AST node that identi�es the
free variable.

Figure 2 illustrates the use of the lua2ast.toAST() function. The Lua code
on this example operates equivalently to the code on Figure 1. For illustration
purposes, the code also calls lua2ast.print(), which dumps the AST in textual
format, following the syntax of Metalua. It represents node types with names
such as `Function; node data is represented as strings such as "x". The output
produced by the call at line 7 would be as follows:

{ `Function{ { `Id "x" },

{ `Return{ `Op{ "add", `Id "x", `Id "y"}}}

}}

Node `Id "y" is internally decorated with a closure that returns the value
of y de�ned in line 4.

3.2 Function lua2ast.compile(ast)

This function takes an AST and returns a new function object that is a result of
the AST's compilation. When used with ASTs generated by lua2ast.toAST(),
it will use the additional decoration to produce variable references with proper
lexical scope.

Function lua2ast.toAST() works by generating source code, compiling it
and then using the standard debug library's facilities to attach the auxiliary
closures to the generated function's upvalue slots.

1 local lua2ast = require "lua2ast"

2

3 function boo()

4 local y = 1

5 local treesumY = lua2ast.toAST(function(x) return x + y end)

6 y = y + 1

7 lua2ast.print(treesumY)

8 return treesumY

9 end

10

11 function foo()

12 local y = 10

13 local ret = boo()

14 return lua2ast.compile(ret)(40) -- returns 42

15 end

Fig. 2. Lua2AST usage example

Proceeding with the example of Figure 2, the AST returned in line 13 would
be initially converted into the following source code (Lua uses double-brackets
for multi-line strings):

[[local y

return function(x) return x + y() end]]

Prior to the reconstructed source code of the functions, we add declarations
of local variables for each outer local variable referenced in the function. Note
also that references for these variables are replaced by function calls in the body
of the function.

We then compile this source code using Lua's standard function loadstring()
and run it to obtain its return value: a Lua function object. Note that in the
value of local y is not assigned in the source code. Calling this function at this
point would result in an error as the upvalue for y points to a variable with the
value of nil.

The �nal step of lua2ast.compile() is to �x the upvalue references to make
them point to the auxiliary closures created by lua2ast.toAST() and stored in
the AST table. For that, we use the standard function debug.setupvalue(),
which takes a closure, an upvalue index and a Lua value, and sets the variable
pointed by the upvalue to the given value. It is worth pointing out, however,
that by setting this value we are not �xing the value of the original variable
reference, since we replaced it in the newly generated function with a call to a
proxy function, which is being �xed in its stead. We formalize this process in
the following section.

Once the upvalues are �xed, lua2ast.compile() returns the function. In
line 14 of Figure 2 we see that the result of the compilation is then further ap-
plied, and the reconstructed function runs according to the scope of the original
function declared in line 5.

e = b |x | let x = e in e |x := e | e(e) | fun(x){e} | e op e | toAST(e) | compile(a)

v = b | 〈Γ, x, e〉 | a
a = [fn x a] | [base b] | [var x 〈Γ, x, e〉] | [op a a]

Fig. 3. Syntax of our version of Lua Core, extended with constructs to specify Lua2AST

4 Semantics

In this section, we specify the behavior of functions lua2ast.toAST() and
lua2ast.compile() by using the formalization of a subset of Lua semantics,
presented in [4] as Lua Core. We use the same formal framework of that work in
order to properly compare and contrast our approach for multi-stage program-
ming to that employed by Terra.

Lua Core depicts the notions of lexical scoping, closures and side-e�ects
present in Lua, and is therefore mostly su�cient for our purposes. We extend
this speci�cation with an arbitrary �binary operator� expression, mimicking Lua
operators supported by Lua2AST. This way, we have a recursive rule through
which we can model Lua expressions as trees, to be later converted to ASTs.
We also include toAST () and compile() as core language operations so we can
specify their semantics separately from plain functions.

The syntax of our version of Lua Core is presented in Figure 3. A Lua ex-
pression (e) can be either a base value (b), a variable (x), a scoped variable
de�nition (let x = e in e, with e1; e2 as sugar for let _ = e1in e2), a variable as-
signment (x := e), an application (e(e)), a function de�nition (fun(x){e}), an
operation on expressions (e op e), or one of the special invocations toAST(e)
and compile(a). Lua values (v) can be base values (b), Lua ASTs (a) or closures.
A closure is represented as a triple 〈Γ, x, e〉, consisting of a namespace Γ : x → p
(mapping variable names x to memory positions p), an input argument x and an
expression body e. A Lua AST for a function consists of a root node ([fn x a])
which may contain nodes that wrap base values ([base b]), operations ([op a a]),
and variables ([var x 〈Γ, x, e〉]). As we will see below, the fact that variables are
wrapped by a node containing a closure is central to our approach.

In Figure 4, we present the rules for evaluating Lua Core over an environment
Σ, which is a tuple (Γ, S) containing a namespace Γ : x → p and a store

S : p → v that maps memory positions to values2. We use
L→: (e × Σ) →

(v × Σ) for the evaluation of Lua expressions as in [4]. Rules for
L→ presented

here are equivalent to those in that work: LVal and LVar evaluate values and
variables; LLet describes variable scoping, by evaluating e2 in an environment
created by adding the result of evaluating e1 and assigning it to local variable x;

2 The semantics of Lua Core in [4] is based on an environment Σ = (Γ, S, F) where F
is speci�c to Terra functions. In our presentation, we removed F . Rules reused from
[4] were adapted accordingly.

v, Σ
L→ v, Σ (LVal)

Σ = (Γ, S)

x, Σ
L→ S(Γ (x)), Σ

(LVar)

e1, Σ1
L→ v1, (Γ2, S2) p fresh

e2, (Γ2[x← p], S2[p← v1])
L→ v2, (Γ3, S3)

let x = e1 in e2, Σ1
L→ v2, (Γ2, S3)

(LLet)

e1, Σ1
L→ 〈Γ1, x, e3〉 , Σ2

e2, Σ2
L→ v1, (Γ3, S3) p fresh

e3, (Γ1[x← p], S3[p← v1])
L→ v2, (Γ4, S4)

e1(e2), Σ1
L→ v2, (Γ3, S4)

(LApp)

e1, Σ1
L→ v, (Γ, S) Γ (x) = p

x := e, Σ
L→ v, (Γ, S[p← v])

(LAsn)

Σ = (Γ, S)

fun(x){e}, Σ
L→ 〈Γ, x, e〉 , Σ

(LFun)

e1, Σ1
L→ v1, Σ2 e2, Σ2

L→ v2, Σ3

v3 = Op(v1, v2)

e1 op e2, Σ1
L→ v3, Σ3

(LOp)

e1, Σ1
L→ 〈Γ, x, e2〉 , Σ2 〈Γ, x, e2〉 , Σ2

D→ a

toAST(e1), Σ1
L→ a, Σ2

(LAst)

a, Σ1
C→ e, Σ2 e

L→ v

compile(a), Σ1
L→ v, Σ2

(LComp)

b, Σ
D→ [base b] (DBase)

Σ = (Γ, S)

x, Σ
D→ [var x 〈Γ,_, x〉]

(DVar)

e1, Σ
D→ a1 e2, Σ

D→ a2

e1 op e2, Σ
D→ [op a1 a2]

(DOp)

e, Σ
D→ a

〈Γ, x, e〉 , Σ D→ [fn x a]
(DFn)

[base b], Σ
C→ b, Σ (CBase)

Σ1 = (Γ, S)
p fresh

Σ2 = (Γ [x← p], S[p← f])

[var x f], Σ1
C→ x(_), Σ2

(CVar)

a1, Σ1
C→ e1, Σ2 a2, Σ2

C→ e2, Σ3

[op a1 a2], Σ1
C→ e1 op e2, Σ3

(COp)

Σ1 = (Γ1, S1)

a, Σ1
C→ e, (Γ2, S2)

[fn x a], Σ1
C→ 〈Γ2, x, e〉 , (Γ1, S2)

(CFn)

Fig. 4. Rules
L→ for the evaluation of Lua expressions,

D→ for decompiling Lua expres-

sions into ASTs, and
C→ for compiling ASTs back into expressions.

LApp describes function application, propagating side e�ects; LAsn evaluates
assignments; LFun evaluates function declarations. Our work adds new rules for
L→: LOp describes the evaluation of an arbitrary binary operator, with semantics
given by some function Op(); LAst describes the evaluation of toAST (); LComp
evaluates compile().

We also add two other relations: rules for decompiling a Lua function into

an AST (
D→: (e×Σ) → a) and rules for compiling ASTs back into Lua functions

(
C→: (a×Σ) → (e×Σ)). These are used in LAst and LComp, respectively.

The decompilation function
D→ takes an expression and an environment and

produces an AST. Since toAST () is a pure function, Σ does not �gure in the

codomain of
D→. Note that

D→ is de�ned only for base values (DBase), variables
(DVar), the binary operator (DOp), and the initial function (DFn), mirroring
the implementation of toAST () in Lua2AST, which only supports functions
containing these elements. Its rules deconstruct the body of the function and
build the corresponding AST. Of particular interest is rule DVar, which stores
in the AST node a newly created closure, which returns the value of x given the
original function's environment.

The compilation function
C→ takes an AST and an environment and produces

a closure and a new environment. For each of the four decompilation rules there is
a complementary compilation rule: CBase, CVar, COp and CFn. Rule CVar
translates nodes representing variable references into a function call to the closure
created by rule DVar. CVar assigns this closure to a variable x in the resulting
environment, and produces a function call to this closure instead of a variable
reference. Rule CFn returns a closure representing the entire compiled function
and a new environment. This environment contains an unmodi�ed namespace
Γ1 and a new store S2, which includes any closures created for keeping variable
references. The extended namespace Γ2 produced by the compilation is used as
the namespace of the resulting function's closure.

As a result of running compile(), all variable references that existed in the
original function that was decompiled and was now recompiled were replaced by
calls to newly-created closures that merely return the value of the corresponding
variables. These closures use the original namespace from decompilation time
(Γ in DVar), so the variable references are bound to the addresses they have in
the lexical scope where decompilation takes place. Any variable x stored in an
AST will only be evaluated when the compiled function returned by compile(a)
is called.

By replacing variable references to function calls to the wrapper closures, we
ensure that the evaluation of variables (ultimately happening within the wrap-
per closures) are based on their original namespaces. This is di�erent from the
approach taken by Terra [4], where evaluation of Lua variables is done when the
Terra code is generated. LINQ [12] preserves the lexical scoping of reconstructed
function objects like our work does, but in our case staging happens entirely at
run time.

5 Conclusion

In this work we presented an approach for multi-stage programming, through
which the lexical scope of variables can be preserved by replacing variable ref-
erences in the generated representation of the embedded language with closures

from the host language. When the intermediate representation is later converted
into executable form, calls to these closures are produced, ensuring access to the
variable in the correct context.

We implemented a module that demonstrates this approach. Our implemen-
tation uses a decompiler to convert, at runtime, Lua functions into an abstract
syntax tree form decorated with closures that capture the lexical environment
of free variables. The module is then able to compile the AST back into Lua, en-
suring that the resulting function accesses the correct variables even if compiled
at a di�erent call site.

The technique we present here is general, and its core principle is not depen-
dent on speci�cities of Lua. It could be implemented in other languages using
other methods, such as source code pre-processing. However, the run-time ma-
nipulation of function objects made possible by decompilation, as opposed to
compile-time manipulation of the source tree, allows us to perform multi-stage
programming dynamically, operating on any suitable functions, even if they were
created via dynamic code generation. This makes our approach particularly suit-
able for dynamic languages.

Our implementation also exploited Lua's facilities for manipulating a clo-
sure's list of upvalues, which allowed the construction of the generated functions
purely through manipulation of Lua function objects, without having to resort to
low-level bytecode generation. The only bytecode-level manipulation performed
by Lua2AST is read-only, and is restricted to the decompiler module. Our im-
plementation required no language extensions and no modi�cations to the Lua
VM.

We also speci�ed the operational semantics for the transformations performed
by Lua2AST, in order to show how the lexical environment of variables is cor-
rectly preserved, and to contrast it with related work from the literature on
multi-stage programming.

This work presents many possibilities for future extensions. The current im-
plementation is a proof-of-concept that demonstrates the technique, and can
be extended to support more of the host language's grammar. Another future
work we envision is the development of di�erent code-generation back-ends, sup-
porting other languages. This would allow, for example, using Lua functions for
writing prepared statements for database query languages.

References

1. Bawden, A.: Quasiquotation in Lisp. In Danvy, O., ed.: Proceedings of the ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manip-
ulation (PEPM 1999). Number NS-99-1 in BRICS Note Series, San Antonio, Texas
(1999) 4�12

2. Calcagno, C., Taha, W., Huang, L., Leroy, X.: Implementing multi-stage languages
using ASTs, gensym, and re�ection. In: Generative Programming and Component
Engineering, Springer (2003) 57�76

3. Czarnecki, K., O'Donnell, J.T., Striegnitz, J., Taha, W.: DSL implementation in
MetaOCaml, Template Haskell, and C++. In: Domain-Speci�c Program Genera-
tion. Springer (2004) 51�72

4. DeVito, Z., Hegarty, J., Aiken, A., Hanrahan, P., Vitek, J.: Terra: A multi-stage
language for high-performance computing. In: Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implementation. PLDI
'13, New York, NY, USA, ACM (2013) 105�116

5. Fleutot, F.: Metalua: Static meta-programming for Lua. https://github.com/

fab13n/metalua (2007) [Visited on February 2015].
6. Fleutot, F., Tratt, L.: Contrasting compile-time meta-programming in Metalua

and Converge. In: Proceedings of the Workshop on Dynamic Languages and Ap-
plications. (2007)

7. Fowler, M.: Domain Speci�c Languages. 1st edn. Addison-Wesley Professional
(2010)

8. Ierusalimschy, R.: Programming in Lua, Second Edition. Lua.Org (2006)
9. Kameyama, Y., Kiselyov, O., Shan, C.c.: Closing the stage: From staged code

to typed closures. In: Proceedings of the 2008 ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-based Program Manipulation. PEPM '08, New
York, NY, USA, ACM (2008) 147�157

10. Maidl, A.M.: lua-parser: a Lua 5.3 parser written with LPeg. https://github.

com/andremm/lua-parser (2013) [Visited on April 2015].
11. McCarthy, J.: Recursive functions of symbolic expressions and their computation

by machine, part I. Communications of ACM 3(4) (April 1960) 184�195
12. Microsoft: LINQ. https://msdn.microsoft.com/en-us/library/bb397926.aspx

(2013) [Visited on April 2015].
13. Muhammad, H.: LuaDec: a decompiler for the Lua language. http://luadec.

luaforge.net/ (2006) [Visited on April 2015].
14. Taha, W.: Multi-stage programming: Its theory and applications. PhD thesis,

Oregon Graduate Institute of Science and Technology (1999)
15. Taha, W.: A gentle introduction to multi-stage programming. In: Domain-Speci�c

Program Generation. Springer (2004) 30�50
16. Taha, W.: A gentle introduction to multi-stage programming, part II. In: Genera-

tive and Transformational Techniques in Software Engineering II. Springer (2008)
260�290

17. Westbrook, E., Ricken, M., Inoue, J., Yao, Y., Abdelatif, T., Taha, W.: Mint: Java
multi-stage programming using weak separability. In: Proceedings of the 2010 ACM
SIGPLAN Conference on Programming Language Design and Implementation.
PLDI '10, New York, NY, USA, ACM (2010) 400�411

