

Lua Application Programming:
Starting a conversation

Hisham Muhammad
https://hisham.hm/

https://mastodon.social/@hisham_hm

LuaConf 2017
Rio de Janeiro, 2017-06-03

Chapter 1

Programming in the Large

But what is Lua for, anyway?

Lua, an extension language for
configuration

● Lua 5.0 (2003)
– Lua is an extension programming language designed to

support general procedural programming with data
description facilities. It also offers good support for
object-oriented programming, functional programming,
and data-driven programming. Lua is intended to be used
as a powerful, light-weight configuration language for any
program that needs one.

Lua, an extension language for
scripting

● Lua 5.1 (2006)
– Lua is an extension programming language designed to

support general procedural programming with data
description facilities. It also offers good support for
object-oriented programming, functional programming,
and data-driven programming. Lua is intended to be used
as a powerful, light-weight scripting language for any
program that needs one.

Lua, an extension language for
scripting

● Lua 5.2 (2011)
– Lua is an extension programming language designed to

support general procedural programming with data
description facilities. It also offers good support for
object-oriented programming, functional programming,
and data-driven programming. Lua is intended to be used
as a powerful, light-weight embeddable scripting
language for any program that needs one.

Lua, a scripting language

● Lua 5.3 (2015)
– Lua is a powerful, efficient, lightweight, embeddable

scripting language. It supports procedural programming,
object-oriented programming, functional programming,
data-driven programming, and data description.

Lua, a scripting language

● Lua 5.3 (2015)
– Lua is a powerful, efficient, lightweight, embeddable

scripting language. It supports procedural programming,
object-oriented programming, functional programming,
data-driven programming, and data description.

(...)

Lua is intended to be used both as a powerful,
lightweight, embeddable scripting language for any
program that needs one, and as a powerful but
lightweight and efficient stand-alone language.

So let’s write stand-alone
programs with Lua!

● Games!
● Servers!
● Theorem provers!
● Package managers!

Awesome, where do I start?

Writing applications

● A lot goes into writing an application:
The language itself

Writing applications

● A lot goes into writing an application:
– The language itself

Writing applications

● A lot goes into writing an application:
– The language itself

– The language environment

Writing applications

● A lot goes into writing an application:
– The language itself

– The language environment

– The development tools

Writing applications

● A lot goes into writing an application:
– The language itself

– The language environment

– The development tools

– The deployment

Writing applications

● A lot goes into writing an application:
– The language itself

Which version of Lua? (Does it matter?)
– The language environment

Platforms? Libraries? Frameworks?
– The development tools

Editors? Static checkers? Testing? CI?
– The deployment

How will users install and run your program?

Writing applications

● A lot goes into writing an application:
– The language itself

Which version of Lua? (Does it matter?)
– The language environment

Platforms? Libraries? Frameworks?
– The development tools

Editors? Static checkers? Testing? CI?
– The deployment

How will users install and run your program?

Writing applications

● A lot goes into writing an application:
– The language itself

Which version of Lua? (Does it matter?)
– The language environment

Platforms? Libraries? Frameworks?
– The development tools

Editors? Static checkers? Testing? CI?
– The deployment

How will users install and run your program?

Writing applications

● A lot goes into writing an application:
– The language itself

Which version of Lua? (Does it matter?)
– The language environment

Platforms? Libraries? Frameworks?
– The development tools

Editors? Static checkers? Testing? CI?
– The deployment

How will users install and run your program?

Programming in the Large

● Usually involves dealing with:
– Teamwork
– Long-term maintenance

Programming in the Large

● Usually involves dealing with:
– Teamwork
– Long-term maintenance

● How to go about it:
– Coding for collaboration
– Architecture: handling complexity

Chapter 2

Which Lua?

Lua 5.1
Lua 5.2
Lua 5.3

LuaJIT 2.0
LuaJIT 2.1-beta

Lua 5.1
Lua 5.2
Lua 5.3

LuaJIT 2.0
LuaJIT 2.1-beta

(also: MoonScript, Terra, Ravi, (and soon!) Typed Lua)

5.1 5.2 5.3 LJ2.0 LJ2.1b
setfenv and getfenv ✓ ✓ ✓

math.log10 ✓ ✓ ✓

module ✓ ✓ depr. ✓ ✓

package.loaders ✓ ✓ depr. ✓ ✓

goto ✓ ✓ ✓ ✓

xpcall(f, err, [args...]) ✓ ✓ ✓ ✓

bit32 ✓ ✓ depr.

_ENV ✓ ✓

package.searchers ✓ ✓ ✓

table.pack and table.unpack ✓ ✓ ✓ compat. ✓ compat.

Ephemeron tables ✓ ✓

__pairs and __ipairs ✓ ✓ depr. ✓ compat. ✓ compat.

os.execute detail return values ✓ ✓ ✓ compat. ✓ compat.

io.read without * ✓ ✓

table.move ✓ ✓

coroutine.isyieldable ✓ ✓

Bitwise operators ✓

64-bit integer subtype ✓

ffi ✓ ✓

bit ✓ ✓

continue

5.1 5.2 5.3 LJ2.0 LJ2.1b
setfenv and getfenv ✓ ✓ ✓

math.log10 ✓ ✓ ✓

module ✓ ✓ depr. ✓ ✓

package.loaders ✓ ✓ depr. ✓ ✓

goto ✓ ✓ ✓ ✓

xpcall(f, err, [args...]) ✓ ✓ ✓ ✓

bit32 ✓ ✓ depr.

_ENV ✓ ✓

package.searchers ✓ ✓ ✓

table.pack and table.unpack ✓ ✓ ✓ compat. ✓ compat.

Ephemeron tables ✓ ✓

__pairs and __ipairs ✓ ✓ depr. ✓ compat. ✓ compat.

os.execute detail return values ✓ ✓ ✓ compat. ✓ compat.

io.read without * ✓ ✓

table.move ✓ ✓

coroutine.isyieldable ✓ ✓

Bitwise operators ✓

64-bit integer subtype ✓

f ✓ ✓

bit ✓ ✓

continue

Solution:
Write to the common subset

● Easier than it seems
– LuaRocks does it!

● Many compatibility libraries:
– https://luarocks.org/modules/luarocks/luabitop
– https://luarocks.org/modules/sifejoe/bit32
– https://luarocks.org/modules/hisham/compat52
– https://luarocks.org/modules/hisham/compat53
– https://github.com/facebook/luaffb

https://luarocks.org/modules/luarocks/luabitop
https://luarocks.org/modules/siffiejoe/bit32
https://luarocks.org/modules/hisham/compat52
https://luarocks.org/modules/hisham/compat53
https://github.com/facebook/luaffifb

Chapter 3

The Perl Paradox

Programming languages
and their mottos

● Perl
– “There’s More Than One Way To Do It”

● Python
– “There should be one—an preferrably only

one—obvious way to do it” - Zen of Python
● Lua

– “Mechanisms, not policies”

Programming languages
and their mottos

● Perl – maximalist: n ways to do it
– “There’s More Than One Way To Do It”

● Python – opinionated: 1 way to do it
– “There should be one—an preferrably only

one—obvious way to do it” - Zen of Python
● Lua – minimalist: 0 ways to do it

– “Mechanisms, not policies”

Programming languages
and their mottos

● Perl – maximalist: n ways to do it
– “There’s More Than One Way To Do It”

● Python – opinionated: 1 way to do it
– “There should be one—an preferrably only

one—obvious way to do it” - Zen of Python
● Lua – minimalist: 0 ways to do it

– “Mechanisms, not policies”

Programming languages
and their mottos

● Perl – maximalist: n ways to do it
– “There’s More Than One Way To Do It”

● Python – opinionated: 1 way to do it
– “There should be one—an preferrably only

one—obvious way to do it” - Zen of Python
● Lua – minimalist: 0 ways to do it

– “Mechanisms, not policies”

Programming languages
and their mottos

● Perl – maximalist: n ways to do it
– “There’s More Than One Way To Do It”

● Python – opinionated: 1 way to do it
– “There should be one—an preferrably only

one—obvious way to do it” - Zen of Python
● Lua – minimalist: 0 ways to do it

– “Mechanisms, not policies”
● Corollary: “There’s More Than One Way To Do It”

GOOD:

Create the world

BAD:

GOOD:
● Control over all

components
● Tailored for your

application
● Everything is exactly

the way you want

Create the world

BAD:

GOOD:
● Control over all

components
● Tailored for your

application
● Everything is exactly

the way you want

Create the world

BAD:
● Control over all

components
● Tailored for your

application
● Everything is exactly

the way you want

GOOD:
● Control over all

components
● Tailored for your

application
● Everything is exactly

the way you want

Create the world

BAD:
● Responsibility over all

components
● Tailored for your

application only
● The way you want

may not be what
others want

GOOD:
● Control over all

components
● Tailored for your

application
● Everything is exactly

the way you want

Create the world

BAD:
● Responsibility over all

components
● Tailored for your

application only
● The way you want

may not be what
others want

● A lot of work!

Solution:
Model your app with libraries

● Structure as much of your application as
possible as libraries
– LuaRocks doesn’t do it :-(

● Split concerns into libraries
– Favor reusing existing ones

● Don’t go overboard writing libraries
– ...or you’ll never get to the app!

Libraries!? I just want to write a program!
What about the KISS principle?

Why not monolithic design

● Lua is a dynamic language: the structure of your
tables is not written anywhere in the program

It’s too tempting to “create tables as you go”
and just “pass tables around”

Eventually things get out of hand
What is the lifetime of this field in this table?

Which parts of the code are responsible for keeping
this field up-to-date?

Is this the only place where this part of the table is
used?

Why not monolithic design

● Lua is a dynamic language: the structure of your
tables is not written anywhere in the program

● It’s too tempting to “create tables as you go”
and just “pass tables around”

Eventually things get out of hand
What is the lifetime of this field in this table?

Which parts of the code are responsible for keeping
this field up-to-date?

Is this the only place where this part of the table is
used?

Why not monolithic design

● Lua is a dynamic language: the structure of your
tables is not written anywhere in the program

● It’s too tempting to “create tables as you go”
and just “pass tables around”

● Eventually things get out of hand
– What is the lifetime of this field in this table?
– Which parts of the code are responsible for keeping

this field up-to-date?
– Is this the only place where this part of the table is

used?

Library-oriented design

● Helps coding for collaboration
– Well-defined programming interfaces
– Well-defined responsibility boundaries

● Helps taming complexity
– Divide and conquer
– Each piece is small and simple!

Libraries avoid tricks

● The library mindset helps you avoid tricks
● Avoid whenever possible:

– Global metatable magic
– Global variables
– Global environment tricks
– Debug library tricks
– Implicit coroutine use

● These things do not compose

Don’t create
another incompatible world

● Your main program becomes a client of
well-behaved libraries

...and not its own little custom world
● Compatible with development tools

...some of which need to use the tricks

Don’t create
another incompatible world

● Your main program becomes a client of
well-behaved libraries

...and not its own little custom world
● Compatible with development tools

...some of which need to use the tricks

(Lua embedded in a non-Lua app is a little custom world!
In this case other criteria apply)

Chapter 4

A Brief Tour of Tools

Tools matter

● The Lua interpreter alone can only take
you so far
– Written in pure ISO C for maximum portability
– A complete language VM in a 250kB lib!
– Almost no OS facilities: can’t even list a directory

by itself

● You almost certainly will need more
– Interaction with the system: Additional libraries
– Development tools

Platforms

● Desktop
– Bindings of GUI libraries and their object models:

lgi (GTK+), WxLua, NLua (.NET), LuaJ (JVM)
– Löve2D for games

● Mobile
– Cross-platform: Corona, Gideros... (Löve2D too!)

● Web
– Lapis, Sailor
– OpenResty

https://github.com/pavouk/lgi/
http://wxlua.sourceforge.net/
http://nlua.org/
http://www.luaj.org/luaj/3.0/README.html
https://love2d.org/
https://coronalabs.com/corona-sdk/
http://giderosmobile.com/
http://leafo.net/lapis/
http://www.sailorproject.org/
https://openresty.org/en/

Development tools

● Editors:
– ZeroBraneStudio, LDT for Eclipse, editor plugins

● Static checker:
– luacheck (preferrably integrated with your editor!)

● Testing:
– Busted for unit testing, luacov for coverage analysis

● Package management: LuaRocks
● Documentation: LDoc
● Lua version management: hererocks, luaver
● CI: Great talk by Enrique García on Travis integration

https://studio.zerobrane.com/
https://www.eclipse.org/ldt/
https://github.com/mpeterv/luacheck
https://github.com/mpeterv/luacheck#related-projects
http://olivinelabs.com/busted/
https://keplerproject.github.io/luacov/
https://luarocks.org/
https://github.com/stevedonovan/LDoc
https://github.com/mpeterv/hererocks
https://dhavalkapil.com/luaver/
https://archive.fosdem.org/2016/schedule/event/continuous_integration_with_lua/

Deployment

● How will users install and run your program?
– Via the package manager (Unix)

● LuaRocks supports pure-Lua applications
● Native distro packages?

– Make self-contained Lua packages (Windows)
● luabuild
● wxFreeze in wxLua

● Unfortunately we don’t have (yet?) a simple
one-size-fits-all solution

https://github.com/stevedonovan/luabuild

Chapter 5

In short...

Lua application programming
is a reality

● Lua is not only for scripting
● Lua application programming is a reality
● Programming in the large requires its own

mindset
● Works great in some environments

– Examples in this conf!
● Still some rough edges in some scenarios

To be continued!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

