

minimalism versus types
Hisham Muhammad
<hisham@konghq.com>

minimalism
Lua: fits in my head

g

types
pair-programming with the computer

untyped: no types at all
assembly, un(i)typed lambda calculus

typed: types exist!
string and number are different things

(even if you can do "1" + 2)

dynamically typed:
values have types, variables don't

Lua, Scheme, Erlang, Python, Ruby, PHP, etc.

statically typed:
values have types, variables have types

C, Java, Go, C#, Rust, Haskell, etc.

strongly typed
weakly typed

dynamically typed:
values have types, variables don't

Lua, Scheme, Erlang, Python, Ruby, PHP, etc.

statically typed:
values have types, variables have types

C, Java, Go, C#, Rust, Haskell, etc.

what happens when we put
minimalism and types together?

a brief history of typing Lua

2013: Tidal Lock
https://github.com/fab13n/metalua/blob/tilo/src/tilo/readme.md

https://github.com/fab13n/metalua/blob/tilo/src/tilo/readme.md

2015: Typed Lua
https://github.com/andremm/typedlua

https://github.com/andremm/typedlua

2017: Titan
https://github.com/titan-lang/titan

https://github.com/titan-lang/titan

2018: Pallene
https://github.com/pallene-lang/pallene

https://github.com/pallene-lang/pallene

and yet

why is it so hard?

once you add types and the whole enchilada
that comes with it, then the language is

no longer minimalistic,
right?

once you add types and the whole enchilada
that comes with it, then the language is

no longer minimalistic,
right?

types make our tiny languages complicated?

the problem is kinda the opposite

dynamically typed languages
have HUGE type systems

type system: set of rules that describe
what are the valid interactions of values

in correct programs

type system: set of rules that describe
what are the valid interactions of values

in correct programs
it's in your head!

you are the type checker

obj.x, obj.y = get_coords()

can't do that:
yesterday I changed get_coords from

return x, yto
return { x = x, y = y }

what are the rules in your head?

dynamically typed:
values have types, variables don't

Lua, Scheme, Erlang, Python, Ruby, PHP, etc.

statically typed:
values have types, variables have types

C, Java, Go, C#, Rust, Haskell, etc.

dependently typed:
values have types, variables have types...

and types have values! and types!
Idris, Agda... not that many yet!

function f(a, b)

function f(a, b)

a: integer
b: if a < 256 then string else array of strings

function f(a, b)

a: integer
b: if a < 256 then string else array of strings

red: integer
green: integer
blue: integer

function f(a, b)

a: integer
b: if a < 256 then string else array of strings

red: integer
green: integer
blue: integer

f(red, {1, 2, 3})

Curry-Howard correspondence
propositions ↔ types
logic ↔ type system

btw, arithmetics is undecidable

 local t = {}
 local ok, err = load_values_into_table(t)
 if not ok then
 return nil, "failed! " .. err
 end
 return { r = t[1], g = t[2], b = t[3] }

Lua: table is the only structured type

everything is a table
a table is anything

everything is a table
a table is anything

an array

everything is a table
a table is anything

an array
a dictionary

everything is a table
a table is anything

an array
a dictionary

a struct

everything is a table
a table is anything

an array
a dictionary

a struct
an object

everything is a table
a table is anything

an array
a dictionary

a struct
an object

a dictionary mapping objects to strings or
arrays depending on whether field x of the

key object is true or false

expressiveness

not really what a language can express
but how can you express it

dynamically typed languages are
super expressive

like a blank sheet of paper

type checker works both for good
("Thank you for catching my silly typo!")

 and bad
("no, I _know_ that this use of the variable is safe!")

expressiveness is the feel of a language

 local t = {}
 t.name = "items"
 t[1] = 100
 t[2] = 200

here's the dilemma:
how much of the language do you change?

if you want to make it feel like Lua,
then the type checker is super complex
if you want to finish your type checker,

you have to make cuts somewher

two options on where to make cuts

cut on programmer expressiveness
{ name = "items", items = {100, 200} }

return x, y and return nil, err
vs.

return x, y and return nil, nil, err

cut on the correctness of the type checker

"every program the type checker accepts has
correct types"

"every program that the type checker rejects
has wrong types"

the more sophisticated your type system,
the deeper you are in research territory

soundness vs. usability (vs. performance!)
Typed Lua

Typed Clojure
Typed Racket

is all lost?

TypeScript

usability above all else
https://github.com/Microsoft/TypeScript/wiki/TypeScript-Design-Goals

https://github.com/Microsoft/TypeScript/wiki/TypeScript-Design-Goals

intentionally unsound

intentionally unsound

what about Lua?

exploring this design space

tl: minimalistic Lua type checker
what's the minimum set of features

so that it can check itself?

tl tl.tl: currently fails with 384 type errors

tl tl.tl: currently fails with 384 type errors
(one week ago it was 1493!)

TypeScript: JavaScript-like
(features, features, features!)

tl: aiming for Lua-like
(a balance between functionality and small size)

http://github.com/hishamhm/tl

http://github.com/hishamhm/tl

so, in closing

Lua and types: to be continued!

thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

